On a conjecture of Rapoport and Zink

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Conjecture of Rapoport and Zink

In their book Rapoport and Zink constructed rigid analytic period spaces F for Fontaine’s filtered isocrystals and period morphisms from moduli spaces of p-divisible groups to some of these period spaces. They conjectured the existence of an étale bijective morphism F → F of rigid analytic spaces and of interesting local systems of Qp-vector spaces on F. For those period spaces possessing perio...

متن کامل

On a Conjecture of Kottwitz and Rapoport

We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur’s Inequality for all split and quasi-split (connected) reductive groups. These results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.

متن کامل

On the Conjecture of Langlands and Rapoport

FORENOTE (2007): The remarkable conjecture of Langlands and Rapoport (1987) gives a purely group-theoretic description of the points on a Shimura variety modulo a prime of good reduction. In an article in the proceedings of the 1991 Motives conference (Milne 1994, §4), I gave a heuristic derivation of the conjecture assuming a sufficiently good theory of motives in mixed characteristic. I wrote...

متن کامل

Relative p-adic Hodge theory and Rapoport- Zink period domains

As an example of relative p-adic Hodge theory, we sketch the construction of the universal admissible filtration of an isocrystal (φ-module) over the completion of the maximal unramified extension of Qp, together with the associated universal crystalline local system. Mathematics Subject Classification (2000). Primary 14G22; Secondary 11G25.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2013

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-012-0437-9